Problem Set 1: Unbiased Estimator of the Error Variance

This assignment will guide you through the derivations needed to determine what is a unbiased estimator of the error variance in the context of a univariate linear regression. This assignment may be quite challenging. Good Luck!

Consider the univariate linear regression model

$$
\begin{equation*}
y_{t}=\alpha+\beta x_{t}+u_{t}, \quad t=1, \ldots, T \tag{1}
\end{equation*}
$$

where the regressors are non-stochastic (fixed) and the disturbances have zero mean and are uncorrelated and homoscedastic with variance equal to σ^{2}, i.e., $\mathbb{E}\left[u_{t}\right]=0$, $\mathbb{C}\left[u_{t}, u_{s}\right]=0, t \neq s$, and $\mathbb{V}\left[u_{t}\right]=\mathbb{E}\left[u_{t}^{2}\right]=\sigma^{2}$. The aim of this problem set will be to derive that

$$
s^{2}=\frac{1}{T-2} \sum_{t=1}^{T} \hat{u}_{t}^{2}
$$

is an unbiased estimator of the disturbance variance σ^{2}, where $\hat{u}_{t}=y_{t}-\hat{y}_{t}, \hat{y}_{t}=\hat{\alpha}+\hat{\beta} x_{t}$, and $\hat{\alpha}$ and $\hat{\beta}$ are the OLS estimators of α and β, respectively. The OLS estimates $\hat{\alpha}$ and $\hat{\beta}$ are given by

$$
\hat{\beta}=\frac{\sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)\left(x_{t}-\bar{x}\right)}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}, \quad \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
$$

which can also be expressed as

$$
\hat{\beta}=\sum_{t=1}^{T} w_{t} y_{t}, \quad \hat{\alpha}=\sum_{t=1}^{T} q_{t} y_{t}
$$

where

$$
w_{t}=\frac{x_{t}-\bar{x}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}, \quad q_{t}=\frac{1}{T}-\bar{x} \cdot w_{t} .
$$

Question 1 - Verify simple properties.

Verify the following 7 properties:

1. $\sum_{t=1}^{T} w_{t}=0$
2. $\sum_{t=1}^{T} w_{t} x_{t}=1$
3. $\sum_{t=1}^{T} q_{t}=1$
4. $\sum_{t=1}^{T} q_{t} x_{t}=0$
5. $\sum_{t=1}^{T} w_{t}^{2}=\frac{1}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}$
6. $\sum_{t=1}^{T} q_{t}^{2}=\frac{\frac{1}{T} \sum_{t=1}^{T} x_{t}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}$
7. $\sum_{t=1}^{T} q_{t} w_{t}=\frac{-\bar{x}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}$

As you work through the problem set, you should always look back at these 8 properties and see which one can help you in each step.

For example, with properties 1 and 2 in hand, it is easy to show (as we did in class) that:

$$
\hat{\beta}=\sum_{t=1}^{T} w_{t} y_{t}=\sum_{t=1}^{T} w_{t}\left(\alpha+\beta x_{t}+u_{t}\right)=\beta+\sum_{t=1}^{T} w_{t} u_{t} .
$$

Likewise, using properties 3 and 4 it is easy to show (as we did in class) that:

$$
\hat{\alpha}=\sum_{t=1}^{T} q_{t} y_{t}=\sum_{t=1}^{T} q_{t}\left(\alpha+\beta x_{t}+u_{t}\right)=\alpha+\sum_{t=1}^{T} q_{t} u_{t}
$$

Question 2 - Computing the expression for the sum of the residuals.

Show that the residuals from the regression described by Eq. 1 can be expressed as:

$$
\hat{u}_{t}=-\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]+u_{t} .
$$

And, therefore,

$$
\hat{u}_{t}^{2}=\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}+u_{t}^{2}-2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}
$$

The sum of the residuals therefore can be expressed as:

$$
\sum_{t=1}^{T} \hat{u}_{t}^{2}=\sum_{t=1}^{T}\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}+\sum_{t=1}^{T} u_{t}^{2}-\sum_{t=1}^{T} 2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}
$$

The expected sum of the residuals therefore can be expressed as:

$$
\sum_{t=1}^{T} \mathbb{E}\left[\hat{u}_{t}^{2}\right]=\sum_{t=1}^{T} \mathbb{E}\left[\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}\right]+\sum_{t=1}^{T} \mathbb{E}\left[u_{t}^{2}\right]-\sum_{t=1}^{T} \mathbb{E}\left[2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}\right]
$$

The expression above can be broken down into 3 components:

- Component 1: $\sum_{t=1}^{T} \mathbb{E}\left[2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}\right]$
- Component 2: $\sum_{t=1}^{T} \mathbb{E}\left[\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}\right]$
- Component 3: $\sum_{t=1}^{T} \mathbb{E}\left[u_{t}^{2}\right]$

The next 3 questions will make you work on each of these components.

Question 3 - Working with Component 1.

Note that:

$$
(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}=\left(\sum_{s=1}^{T} q_{s} u_{s}\right)+\left(\sum_{s=1}^{T} w_{s} u_{s}\right) x_{t} .
$$

Using the expression above, show that:

$$
\mathbb{E}\left[\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}\right]=\left(q_{t}+w_{t} x_{t}\right) \sigma^{2}
$$

and, therefore, that

$$
\sum_{t=1}^{T} \mathbb{E}\left[2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}\right]=4 \sigma^{2}
$$

Question 4 - Working with Component 2

Show that

$$
\mathbb{E}\left[\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}\right]=\sigma^{2}\left[\frac{\frac{1}{T} \sum_{t=1}^{T} x_{t}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}+\frac{x_{t}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}-2 \frac{\bar{x} \cdot x_{t}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}\right]
$$

and, therefore, that

$$
\sum_{t=1}^{T} \mathbb{E}\left[\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}\right]=2 \sigma^{2}
$$

(This can be quite challenging)

Question 5 - Working with Component 3

Show that

$$
\sum_{t=1}^{T} \mathbb{E}\left[u_{t}^{2}\right]=T \sigma^{2}
$$

(This should be very easy)

Final Step

This final step is easy and I will solve it for you. Once we have obtained the expressions for the three components in questions 3,4 , and 5 we simply have to put all the pieces together to obtain an unbiased estimator of the error variance. To be precise:

$$
\sum_{t=1}^{T} \hat{u}_{t}^{2}=\sum_{t=1}^{T} \mathbb{E}\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right]^{2}+\sum_{t=1}^{T} \mathbb{E}\left[u_{t}^{2}\right]-\sum_{t=1}^{T} \mathbb{E}\left[2\left[(\hat{\alpha}-\alpha)+(\hat{\beta}-\beta) x_{t}\right] u_{t}\right]
$$

simplifies to

$$
\sum_{t=1}^{T} \mathbb{E}\left[\hat{u}_{t}^{2}\right]=2 \cdot \sigma^{2}+T \cdot \sigma^{2}-4 \cdot \sigma^{2}=(T-2) \cdot \sigma^{2}
$$

Divide by $(T-2)$ on both sides the expression above to obtain the unbiased estimator of the error variance:

$$
\mathbb{E}\left[\frac{1}{T-2} \sum_{t=1}^{T} \hat{u}_{t}^{2}\right]=\sigma^{2}
$$

